对Python进行数据分析_关于Package的安装问题

发布时间:2019-10-05 发布网站:大佬教程
大佬教程收集整理的这篇文章主要介绍了对Python进行数据分析_关于Package的安装问题大佬教程大佬觉得挺不错的,现在分享给大家,也给大家做个参考。

一、为什么要使用Python进行数据分析?

python拥有一个巨大的活跃的科学计算社区,拥有不断改良的库,能够轻松的集成C,C++,Fortran代码(Cython项目),可以同时用于研究和原型的构建以及生产系统的构建。

二、Python的优势与劣势:

1.Python是一种解释型语言,运行速度比编译型数据慢。

2.由于python有一个全局解释器锁(GIL),防止解释器同时执行多条python字节码,所以python不适用于高并发、多线程的应用程序。

三、使用Python进行数据分析常用的扩展包。

目前初始阶段的学习主要涉及4个包的安装:numpy、scipy、pandas、matplotlib

我笔记本里安装的是Python2.7版本,在安装了pip和setuptools工具,关于pip和setuptools工具的安装详见相关笔记。

最初使用的安装命令很简单:

pip install pandas
pip install numpy
pip install scipy
pip install matplotlib

但是只安装成功了numpy和matplotlib两个包,pandas和scipy安装失败,查阅了相关资料发现可能是版本问题或者包的依赖相关。

最终在stack overflow发现了一个很棒的Python包提供网址:http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy

--这里要Mark一下,后边争取写一个爬虫,搞下来所有的包防止丢失。

以上网址是加州大学欧文分校提供的Python相关库的下载地址,修改#后边的名字可以进去其他包的下载页面,此页面中提供了安装某个包需要依赖的前置包的说明,非常友好。

依赖包说明类似:

Pandas,a cross-section and time series data analysis toolkit.
Requires numpy,dateutil,pytz,setuptools,and optionally numexpr,bottleneck,scipy,matplotlib,pytables,lxml,xarray,blosc,backports.lzma,statsmodels,sqlalchemy and other dependencies.

然后就是一堆的pandas下载地址。

最终根据各个包的相关性先安装了numpy+mkl的whl文件,然后是安装scipy最后是pandas。

安装的方法如下:

1.下载对应的4个包放在D:\目录下(很奇怪我笔记本是AMD64位的但是安装amd64版本的包报不支持的platform的错误,安装了32位的可以正常import)

2.cmd命令行进入D:\目录执行:pip install <包的全名>进行安装。(如果已安装了其他错误的版本,使用pip uninstall卸载)

最后使用如下类似命令查看包的安装位置:

对Python进行数据分析_关于Package的安装问题

 

以上这篇对Python进行数据分析_关于Package的安装问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持编程小技巧。

大佬总结

以上是大佬教程为你收集整理的对Python进行数据分析_关于Package的安装问题全部内容,希望文章能够帮你解决对Python进行数据分析_关于Package的安装问题所遇到的程序开发问题。

如果觉得大佬教程网站内容还不错,欢迎将大佬教程推荐给程序员好友。

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
如您有任何意见或建议可联系处理。小编QQ群:277859234,请注明来意。
标签:Package安装