程序笔记   发布时间:2022-07-19  发布网站:大佬教程  code.js-code.com
大佬教程收集整理的这篇文章主要介绍了实验四 决策树算法及应用大佬教程大佬觉得挺不错的,现在分享给大家,也给大家做个参考。
所在班级 机器学习
实验要求 决策树算法及应用
实验目标 理解决策树算法原理,能实现决策树算法
学号 3180701328

【实验目的】

1.理解决策树算法原理,掌握决策树算法框架; 2.理解决策树学习算法的特征选择、树的生成和树的剪枝; 3.能根据不同的数据类型,选择不同的决策树算法; 4.针对特定应用场景及数据,能应用决策树算法解决实际问题。

【实验内容】

1.设计算法实现熵、经验条件熵、信息增益等方法。 2.实现ID3算法。 3.熟悉sklearn库中的决策树算法; 4.针对iris数据集,应用sklearn的决策树算法进行类别预测。 5.针对iris数据集,利用自编决策树算法进行类别预测。

【实验报告要求】

1.对照实验内容,撰写实验过程、算法及测试结果; 2.代码规范化:命名规则、注释; 3.分析核心算法的复杂度; 4.查阅文献,讨论ID3、5算法的应用场景;

查询文献,分析决策树剪枝策略。

【实验内容及结果】

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets import load_iris
from sklearn.model_SELEction import Train_test_split
from collections import Counter
import math
from math import log
import pprint

实验四 决策树算法及应用

# 书上题目5.1
def create_data():
    datasets = [['青年', '否', '否', '一般', '否'],
               ['青年', '否', '否', '好', '否'],
               ['青年', '是', '否', '好', '是'],
               ['青年', '是', '是', '一般', '是'],
               ['青年', '否', '否', '一般', '否'],
               ['中年', '否', '否', '一般', '否'],
               ['中年', '否', '否', '好', '否'],
               ['中年', '是', '是', '好', '是'],
               ['中年', '否', '是', '非常好', '是'],
               ['中年', '否', '是', '非常好', '是'],
               ['老年', '否', '是', '非常好', '是'],
               ['老年', '否', '是', '好', '是'],
               ['老年', '是', '否', '好', '是'],
               ['老年', '是', '否', '非常好', '是'],
               ['老年', '否', '否', '一般', '否'],
               ]
    labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别']
    # 返回数据集和每个维度的名称
    return datasets, labels

实验四 决策树算法及应用

datasets, labels = create_data()

实验四 决策树算法及应用

Train_data = pd.DataFrame(datasets, columns=labels)

实验四 决策树算法及应用

Train_data

实验四 决策树算法及应用

# 熵
def calc_ent(datasets):
    data_length = len(datasets)
    label_count = {}
    for i in range(data_length):
        label = datasets[i][-1]
        if label not in label_count:
            label_count[label] = 0
        label_count[label] += 1
    ent = -sum([(p/data_length)*log(p/data_length, 2) for p in label_count.values()])
    return ent

# 经验条件熵
def cond_ent(datasets, axis=0):
    data_length = len(datasets)
    feature_sets = {}
    for i in range(data_length):
        feature = datasets[i][axis]
        if feature not in feature_sets:
            feature_sets[feature] = []
        feature_sets[feature].append(datasets[i])
    cond_ent = sum([(len(p)/data_length)*calc_ent(p) for p in feature_sets.values()])
    return cond_ent

# 信息增益
def info_gain(ent, cond_ent):
    return ent - cond_ent

def info_gain_Train(datasets):
    count = len(datasets[0]) - 1
    ent = calc_ent(datasets)
    best_feature = []
    for c in range(count):
        c_info_gain = info_gain(ent, cond_ent(datasets, axis=C))
        best_feature.append((c, c_info_gain))
        print('特征({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain))
    # 比较大小
    best_ = max(best_feature, key=lambda x: x[-1])
    return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])
info_gain_Train(np.array(datasets))
# 定义节点类 二叉树
class Node:
    def __init__(self, root=True, label=None, feature_name=None, feature=NonE):
        self.root = root
        self.label = label
        self.feature_name = feature_name
        self.feature = feature
        self.tree = {}
        self.result = {'label:': self.label, 'feature': self.feature, 'tree': self.treE}

    def __repr__(self):
        return '{}'.format(self.result)

    def add_node(self, val, nodE):
        self.tree[val] = node

    def preDict(self, features):
        if self.root is True:
            return self.label
        return self.tree[features[self.feature]].preDict(features)
    
class DTree:
    def __init__(self, epsilon=0.1):
        self.epsilon = epsilon
        self._tree = {}

    # 熵
    @staticmethod
    def calc_ent(datasets):
        data_length = len(datasets)
        label_count = {}
        for i in range(data_length):
            label = datasets[i][-1]
            if label not in label_count:
                label_count[label] = 0
            label_count[label] += 1
        ent = -sum([(p/data_length)*log(p/data_length, 2) for p in label_count.values()])
        return ent

    # 经验条件熵
    def cond_ent(self, datasets, axis=0):
        data_length = len(datasets)
        feature_sets = {}
        for i in range(data_length):
            feature = datasets[i][axis]
            if feature not in feature_sets:
                feature_sets[feature] = []
            feature_sets[feature].append(datasets[i])
        cond_ent = sum([(len(p)/data_length)*self.calc_ent(p) for p in feature_sets.values()])
        return cond_ent

    # 信息增益
    @staticmethod
    def info_gain(ent, cond_ent):
        return ent - cond_ent

    def info_gain_Train(self, datasets):
        count = len(datasets[0]) - 1
        ent = self.calc_ent(datasets)
        best_feature = []
        for c in range(count):
            c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=C))
            best_feature.append((c, c_info_gain))
        # 比较大小
        best_ = max(best_feature, key=lambda x: x[-1])
        return best_

    def Train(self, Train_data):
        """
        input:数据集D(DataFrame格式),特征集A,阈值eta
        output:决策树T
        """
        _, y_Train, features = Train_data.iloc[:, :-1], Train_data.iloc[:, -1], Train_data.columns[:-1]
        # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T
        if len(y_Train.value_counts()) == 1:
            return Node(root=True,
                        label=y_Train.iloc[0])

        # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T
        if len(features) == 0:
            return Node(root=True, label=y_Train.value_counts().sort_values(ascending=falsE).index[0])

        # 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征
        max_feature, max_info_gain = self.info_gain_Train(np.array(Train_data))
        max_feature_name = features[max_feature]

        # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返回T
        if max_info_gain < self.epsilon:
            return Node(root=True, label=y_Train.value_counts().sort_values(ascending=falsE).index[0])

        # 5,构建Ag子集
        node_tree = Node(root=false, feature_name=max_feature_name, feature=max_featurE)

        feature_list = Train_data[max_feature_name].value_counts().index
        for f in feature_list:
            sub_Train_df = Train_data.loc[Train_data[max_feature_name] == f].drop([max_feature_name], axis=1)

            # 6, 递归生成树
            sub_tree = self.Train(sub_Train_df)
            node_tree.add_node(f, sub_treE)

        # pprint.pprint(node_tree.treE)
        return node_tree

    def fit(self, Train_data):
        self._tree = self.Train(Train_data)
        return self._tree

    def preDict(self, X_test):
        return self._tree.preDict(X_test)
datasets, labels = create_data()
data_df = pd.DataFrame(datasets, columns=labels)
dt = DTree()
tree = dt.fit(data_df)
tree
dt.preDict(['老年', '否', '否', '一般'])
# data
def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = np.array(df.iloc[:100, [0, 1, -1]])
    # print(data)
    return data[:,:2], data[:,-1]

X, y = create_data()
X_Train, X_test, y_Train, y_test = Train_test_split(X, y, test_size=0.3)
from sklearn.tree import DecisionTreeClassifier

from sklearn.tree import export_graphviz
import graphviz
clf = DecisionTreeClassifier()
clf.fit(X_Train, y_Train,)
clf.score(X_test, y_test)
tree_pic = export_graphviz(clf, out_file="myTree.pdf")
with open('myTree.pdf') as f:
    dot_graph = f.read()
graphviz.@R_874_9016@e(dot_graph)

大佬总结

以上是大佬教程为你收集整理的实验四 决策树算法及应用全部内容,希望文章能够帮你解决实验四 决策树算法及应用所遇到的程序开发问题。

如果觉得大佬教程网站内容还不错,欢迎将大佬教程推荐给程序员好友。

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。
如您有任何意见或建议可联系处理。小编QQ:384754419,请注明来意。